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ABSTRACT

The important parameters and failure modes pertinent to ballis-
tic impact are discussed in detail and a review of available theoretical
penetration formulas is presented. A method for a complete solution
to the ballistic impact problem is outlined including the material model,
numerical techniques, application of failure criteria and description of
both post-failure material behavior as well as the residual state. Para-
metric studies based on this outline should reveal the necessary insight

for developing predicitive relationships between the pre-impact and post-

impact parameters,

A complete solution is presented for the case of a steel cylinder
impacting normally into a thin plate of like material. It is shown that pre-
F dictions of stress wave propagation and reflections in the early stages of

impact are in good agreement with one-dimensional theory, The shear

stress, generalized plastic strain and plastic work distributions as well

as the material flow pattern indicate that failure will be due to plugging,
hence the employment of a maximum shear theory of failure. The final
shape of both the projectile and the plate plug are given and the velocity

of the plate material beneath the projectile at the predicted time of failure
is in good agreement with the value of 0. 382 km/sec predicted by the theory
of Recht and Ipson. This gives a residual kinetic energy for the projectile
plate-plug configuration of 3.1 x 109 ergs or 47,4% of the total initial energy.
It is believed that much of the remaining energy is retained in the projectile
and plate-plug as internal energy. It is predicted that both the projectile
and plate-plug will remain intact but a region of contained failure in

the projectile near the impacted surface is defined.
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A second problem in which an aluminum plate was substituted
was also solved, Again the mode of failure was plugging and the pre-
dicted residual state, including the plate plug configuration and residual

velocity, was in good agreement with experimental results.

This document is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only with prior ap-
proval of the Air Force Armament Laboratory (ATBT), Eglin AFB, Florida
32452,

iv

U —



Section

Io

11,

III,

IV,

VI,

VII,

VIII,

TABLE OF CONTENTS

INTRODUCTION. L] L] L] e o o *® & & & & & 0 & 0o o @ . * o @ -
IMPORTANT PENETRATION PARAMETERS., ...
FAILURE MODES. ® @ & & ¢ o & & 0 & 6 o 6 & & o & o 0 o

Fracture due to Initial Stress Wave, . ... .
Radial Fracture Behind Initial Wave Front .
SPBlITHON a5 e dé 3 AP J6 ol dE 636G b
Petalling . . o ¢t et et veeeecesososos
Plugging . « « « e c c e o s scscsocsoescossese

W W WwwWw
.
N W -

REVIEW OF PENETRATION FORMULAS ., .....

4,1 The Theoryof RechtandlIpson. ... .¢¢¢ 0.0
4,2 Thompson's Model . . ... ¢ccceveeoeeeos
4.3 The Theory of Zaid and Paul . .....

4,4 Petalling Failure Caused by Cylmdncal Impact

NUMERICAL SOLUTION OF IMPACT PROBLEMS, .,

5.1 MathemezticalModels . .......c00 0000
5.2 Numerical Techniques .......¢¢0¢....
53 CRAMDeBCri[‘tiOﬂ......-.--.-.....

FAILURE PHENOMENA L4 e & o & & ¢ & o e o L] L ] ® o o L]
6.1 Generalized Material Failure Criteria. ...
6.2 Specific Failure Criteria.. ... .¢ 00000
6.3 Numerical Applications of Failure Criteria
6 4 The Residual State L] * o L * ® o o o @ L] L] e ¢ o L]
CRAM APPLICATIONS AND RESULTS .......

7.1 Problem III (Steelinto Steel) .. ... ¢ ¢ o &
7.2 Problem III-A (Steel into Aluminum) , ... .

CONCLUSIONS ® ® @& 6 ¢ & o 5 & 5 5 ° » 6 & 0o o O & & o s °
APPENDIX I ® & o & & & & © & & & & 8 06 0 6 & &6 4 o & 2 0 0

APPENDIXII...........;...-.........

Page

15
19
22
27
31
31
37
38
41
41
42
43
45
46

46
46

72
91

94

s



Section

TABLE OF

APPENDIX III , . .
APPENDIX IV , , .,
APPENDIX V .., .
APPENDIX VI, ..

REFERENCES ., .,

CONTENTS (Concluded)

O T T A A 101
S 115
e s s o s s e s e s e s e s e s e e e 0 s e e e 122
S 130
S T T T S 137

vi




Figure

9.

10,

11,

12,

LIST OF FIGURES

Residual Velocity Versus Impact Velocity Curve for
Various Ratios of Plate Thickness to Projectile Length,
These Curves for Normal Impact are due to Recht and
Ipson [2].

Residual Velocity Versus Impact Velocity Curve for
Various Ratios of Plate Thickness to Projectile Length,
These Curves for Oblique Impact (45°) are due to Recht
and Ipson (2].

Normalized Penetration Depth Versus Impact Velocity
for Steel and Aluminum Alloy Cylinders Impacting Steel
Armor. These Curves are due to Abbott [ 3].

Ballistic Limit Velocity Versus Target Brinell Hardness
Number for Various Impact Obliquities for the Case of a
57 MM APC M86 Projectile Impacting into 1-1/2 in,
Thick RH Armor Plate. The Curves are due to Curtis (4].

Cross-sectional Schematic Diagrams of Plate Failure
Associated with the Initial Stress Wave,

Cross-sectional Schematic Diagram of Spallation Failure,

Cross-sectional Views of Plates Showing Both Front and
Rear Petalling,

Cross-sectional Schematic Diagram Indicating Plugging-
type Failure,.

Diagram of Plugging Failure used in the Theory of Recht
and Ipson,

Failed Plate Configuration and Projectiles used in
Thompson's Model of Failure[l16],

Petalling Failure Diagrams, These Diagrams are due
to Zaid and Paul [ 21].

Stages of Petalling Failure due to Cylindrical Impact,

Velocity must be Near the Ballistic Limit Velocity for
this Type of Failure,

vii

Page

11

12

16

20

23

28




Figure

13,

14,

15.

16,

17,

18.

19,

20,

21,

22,

23,

24,

25,

26.

217,

LIST OF FIGURES (Continued)

Diagram Indicating an Assumed Kinematic Flow Pattern
for Petalling Failure due to Cylindrical Impact at
Velocities near the Ballistic Limit,

Schematic Representation of Hugoniot Equation of State,
Projection of Von Mises Yield Surface on the ¢ -Plane.
One-dimensional Schematic Showing the Loading and
Unloading Paths for an Elastic-Plastic Hydrodynamic

Material,

Lagrangian Grid at Time Zero for the Case of Axisym-
metric Impact,

Geometrical Configuration for Problems III and III-A,

A Plot of Axial Stress Versus Axial Distance at Various
Times for Problem III,

A Plot of Axial Stress Versus Axial Distance at Various
Times for Problem III,

A Plot of Axial Stress Versus Axial Distance at Various
Times for Problem III.

A Plot of Axial Stress Versus Axial Distance at Various
Times for Problem III,

Diagram for Showing One-dimensional Theoretical
Agreement in the Early Stages of Impact,

Shear Stress Versus Radial Distance Near the Impacted
Surface of the Target at 0, 3263 ysec for Problem III,

Shear Stress Versus Radial Distance at the Center of the
Target at 0, 3263 ysec for Problem III,

Shear Stress Versus Radial Distance near the Free
Surface of the Target at 0, 3263 ysec for Problem III,

Shear Stress Versus Radial Distance near the Free
Surface of the Target at 3,032 ysec for Problem III,

viii

Page

28

32

34

36

39

47

48

49

50

51

54

59

59

60

60



T

-

Figure

28,

29.

30.

31,

32,

33.

34,

35,

36.

LIST OF FIGURES (Continued)

A Plot of Generalized Plastic Strain Versus Radial
Distance for Problem III. The Time is t = 3,123 ysec

and the k-values of 2, 6 and 10 Refer Respectively to

the Free Surface, the Center Plane and the Impact Surface
of the Plate,

Plots of Plastic Work Versus Radial Distance for
Problem III, The Time is t = 3, 123 ysec and the k-values
of 2, 6 and 10 Refer Respectively to the Free Surface,

the Center Plane and the Impact Surface of the Plate,

Plots of Internal Energy Versus Radial Distance for
Problem III, The Time is 3,123 ysec and the k-values
of 2, 6 and 10 Refer Respectively to the Free Surface,
the Center Plane and the Impact Surface of the Plate.

A Plot of Axial Velocity Versus Radial Distance for the
Plate of Proble.n III, The Time is 3,123 ysec and the
k-values of 2, 6 and 10 Refer Respectively to the Free
Surface, the Center Plane and the Impact Surface,

Shear Stress above 2 kbars are shown on a Section of the
Plate Material att = 3,123 ysec for Problem IlI, The
Crosses Indicate Maximum Stresses Acting on a Particular
Plane. The Vertical Dashed Line Represents the Initial
Projectile Radius.,

The Final Predicted Projectile-Plug Configuration,

A Plot of the Projectile Shape for Problem III at

t =1.33 ysec. The Cross-hatched Region Indicates that
the Material has been Subjected to the Maximum Allowable
Tensile Stress,

A Plot of the Projectile Shape for Problem IIl at t = 1,92
psec, The Cross-hatched Region Indicates that the
Material has been Subjected to the Maxiinum Allowable
Tensile Stresses,

Plots of Axial Stress Veraus Axial Distance at Various
Times for Problem I11I-A,

Page

62

63

64

65

67

68

70

71

74

e T —




Figure

37.

38.

39,

40,

41,

42,

43,

44,

45,

46,

47,

LIST OF FIGURES (Concluded)

Plots of Axial Stress Versus Axial Distance at Various
Times for Problem 1lI-A,

Plots of Axial Stress Versus Axial Distance at Various
Times for Problem III-A,

Plots of Axial Stress Versus Axial Distance at Various
Times for Problem III-A,

Shear Stress Versus Radial Distance Near the Impacted
Surface of the Target at t = 2, 756 ysec for Problem III-A,

Shear Stress Versus Radial Distance at the Center Plane
of the Target at t = 2, 756 ysec for Problem III-A,

Shear Stress Versus Radial Distance at the Free Surface
of the Target att = 2,756 ysec for Problem III-A,

Plots of Generalized Plastic Strain Versus Radial
Distance for Problem III-A, The Time is 2,757 ysec
and the k-values of 2, 6 and 10 Refer Respectively to the
Free Surface, the Center Plane and the Impact Surface
of the Plate,

Plots of Plastic Work Versus Radial Distance for Problem
III-A, The Time is 2,757 ysec and the k-values of 2, 6
and 10 Refer Respectively to the Free Surface, the Center
Plane and the Impact Surface of the Plate.

Free Surface Traces of the Plates of Problems III and
III-A at 2,757 ysec,

A Plot of Axial Velocity Versus Radial Distance for the
Plate of Problem III-A, The Time is 2,757 ysec and
the k-values of 2, 6 and 10 Refer Respectively to the
Free Surface, the Center Plane and the Impact Surface.

The Final Predicted Projectile-Plug Configuration for
Problem III-A,

Page

75

76

77

79

79

80

81

82

83

86

87




o Ge e

SECTION I

INTRODUCTION

The ultimate solution to be derived from impact studies, wheth-
er experimental or theoretical in nature, should provide a set of sim-
ple mathematical formulas which relate the influencing pre-impact
parameters, both geometrical and material, with those of the post-
impact state, The derived relationships must be in reasonable agree-
ment with available experimental data as well as provide reliable pre-
dictions in the ranges of parameters for which experimental data are
not available., To meet this latter requirement a thorough understand-
ing of the material flow occurring throughout the impact process as
well as the associated material failure phenomena are necessitated.
Hence, mathematical solutions which describe the material behavior
from the time of initial impact to the time at which residual effects
can be predicted are desirable, A study based on such solutions should
provide the pre-requisite insight necessary for the development of the
required set of predictive relationships.

The availability of large scale computer programs such as CRAM
(Continuous Response of Anelastic Material), which has been developed
at the General Electric Space Sciences Laboratory, provides a feasible
means for such a study of the impact process,

In this report parameters affecting penetration mechanics in the
ballistic range of velocities are discussed and pertinent penetration for-
mulas are reviewed. The details of the numerical solution techniques
to be employed including the material models used are next outlined in
detail, Since the total solution involves the use of failure criteria, various
of these are discussed in general along with the special modes of failure

pertinent to projectile-impacted plates and the resulting residual effects.




Finally, solutions are obtained for two specific impact cases.
These solutions include the numerical results as well as the prediction
of plate failure and residual effects,

The work on the high velocity portion of this contract was con-
cluded at the end of the first six months and the results from that part
of the study are included in the interim report of the same title dated

August 1967 [1],




SECTION II

IMPORTANT PENETRATION PARAMETERS

|
The physical parameters which influence the flow and fracture ,
of material subjected to impact loading in the ballistic range of ve- i
locities can be classified as either configurational or material. Con-
figurational parameters include initial impact speed, obliquity and
yaw as well as geometrical quantities defining the initial projectile
and target shapes and the type of interaction, as in the case of direct
versus edge impact., The residual configurational parameters of in-
terest are those which describe the mass and velocity distribution of

the primary fragments, In addition certain parameters may be of in-

terest which describe the final configuration of the damaged target such |
as hole diameter or extent of petalling cracks, etc. |
Material parameters are those which describe the state proper- !
ties as well as the flow and fracture characteristics of the projectile
and target material. These include equation of state constants, shear

modulus, yield strength or Brinell hardness number, and strain rate

and work hardening coefficients as well as any parameters associated
with failure criteria,

Many of the important impact parameters are well defined and
have a physical basis while others are either poorly defined or are sim-
ply constants appearing in an empirically fitted experimental curve.
Still other parameters or combinations of parameters are yet to be de-
fined through extensive theoretical and experimental parametric inves-
tigations. A thorough understanding of the parameters and how they affect
material flow and fracture is a necessary pre-requisite to the develop-

ment of any penetration theory relating pre- and post-impact parameters.



In this study emphasis is placed on material parameters; however,

the importance of the configurational parameters is recognized be-
cause of their influence on stress states and hence the dynamic ma-
terial behavior.

Figures 1 through 4 are included to provide some insight into the
effects of varying certain important configurational and material para-
meters,

Figures 1 and 2 due to Recht and Ipson (2] show the typical re-
sidual versus impact velocity curves for thin plate plugging by normal-
ly and obliquely impacting projectiles respectively. In addition, the
effect of varying the ratio of plate thickness to projectile length, T/L
is indicated.

Figure 3, due to K, H. Abbott [3]. shows the variation of nor-
malized penetration depth versus impact velocity for the case of steel
and aluminum alloys impacting 1/2 in. steel armor plates of hardness
30 RC., The curves demonstrate the effect of projectile hardness on
penetration,

Figure 4, due to Curtis (4] shows plots of ballistic limit velocity
versus target Brinell hardness numbers for a standard 57 MM APC
M86 projectile impacting a 1-1/2 in, thick RH armor plate. The curves
indicate a shift in optimum hardness toward a higher BHN as impact
obliquity increases,

Figures 1 through 4 indicate certain qualitative relationships
which exist between a few of the important impact parameters such
as residual velocity, ratio of plate thickness to projectile length, irn.
pact obliquity, penetration depth, yield strength or Brinell hardness
number and ballistic limit velocity. Insight into relationships such as
these are necessary for the development of meaningful penetration

formulas.
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Figure 1. Residual Velocity Versus Impact Velocity Curve for Various

Ratios of Plate Thickness to Projectile Length, These Curves

Impact are due to Recht & Ipson (2]
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Figure 2. Residual Velocity Versus Impact Velocity Curve for Various
Ratios of Plate Thickness to Projectile Length, These Curves for Oblique

Impact (45°) are due to Recht and Ipson (2]
5

I



R T —

[ ®- Fxs 318 STEEL 63RC

s x-1020 STEEL ANNEALED
e

O0-2024-T4 AL ALLOY

DEPTH TO DIAMETER RATIO-P/D
(™

Q ] ] I J
2 3 4 5 6 T 8 S 10 Il 12

VELOCITY (V) - (F/$)x10™>

Figure 3, Normalized Penetration Depth Versus Impact Velocity for Steel
and Aluminum Alloy Cylinders Impacting Steel Armor. These Curves are
due to Abbott [ 3]

28600
6.._Q———o-o———o—'o 60°
2400 |-
[74]
o 50°
[}
§ - ) 40-
01600 | o029
-
L 30*
-
O~ ROLLED HOMO
eoo = ARMOR 0*
1 1 1 1 | J

200 240 280 320 360 400
HARDNESS ~ BHN

Figure 4. Ballistic Limit Velocity Versus Target Brinell Hardness Number
for Various Impact Obliquities for the Case of a 57 MM APC MB86 Projectile
Impacting into 1 1/2 in, Thick RH Armor Plate. The Curves are due to
Curtis [ 4]
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SECTION 10

FAILURE MODES

Although material behavior is quite complex when subjected to
the extreme conditions of impact, several definite failure modes can
be delineated which depend on various configurational and geometric
parameters. The knowledge of this dependence is necessary in the
formulation of specific failure criteria and in their later generaliza-
tion for predicative purposes. Fugelso and Bloedow (5] have listed
various types of failure modes which are observed and calculated cri-
tical velocities for which each type of failure would occur provided con-
ditions are such that that type of failure is favored. The various failure
modes will be discussed qualitatively here in order to provide a better
understanding of how the various pararﬁeters involved influence the

mode of failure,

3.1 Fracture Due to Initial Stress Wave

The initial stress wave which propagates through the plate after
impact is compressive in nature, If the compressive dynamic yield
strength is significantly less than the peak compressive stress, failure
is likely to occur if the region subjected to the high stresses is not con-
tained during the passage of the wave, For the case of projectile-plate
impact this situation could occur in the vicinity of the free surface of
the plate and initiate fracture. An increase in target density, hardness
or compressive yield strength, or compressive ultimate strength would
decrease the tendency toward this type of failure. A cross sectional

schematic diagram of this type of fracture is shown in Figure 5(a).
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b. RADIAL FRACTURE BEHIND INITIAL WAVE
FRONT IN A PLATE OF BRITTLE MATERIAL.

Figure 5. Cross-sectional Schematic Diagrams of Plate Failure Associated
with the Initial Stress Wave

3.2 Radial Fracture Behind Initial Wave Front

Although the normal stress behind the initial stress wave front
remains compressive until interaction with rarefaction waves, the ra-
dial stress built up is tensile in nature. If the target material behavee
in a brittle manner and the tensile stresses built up are greater than
the ultimate dynamic tensile \strength, radial and/or circumferential

cracks are likely to occur. This type of failure is shown in Figure 5(b).

8




3.3 Sggllation

When the initial compressive stress wave reflects from the rear
free surface of the plate a tensile wave develops in the region of nor-
mal incidence. If this reilected wave builds up to a tensile stress in
the vicinity of the dynamic ultimate stress in tension for the material,
spall fracture will occur. The parameters governing spallation are the
plate thickness to projectile diameter ratio and the dynamic ultimate ten-
sile strength of the plate material, For the case of rolled, homogeneous

targets, imperfections such as inclusions flattened by the rolling process

might reduce the tensile strength of the material in the transverse direc-
tion below its theoretical value and increase the tendency toward spall
failure. Figure 6 is a cross-sectional schematic diagram of this type

of failure,

: 3.4 Petalling

Petalling failure occurs when the stress condition is such that
radial cracks form from the center outward and the plate material curls
back to allow the projectile to proceed through. This type of failure is

3 due to the large circumferential and radial stresses which develop

e

Figure 6. Cross-Sectional Schematic Diagram of Spallation Failure

9




behind the initial shock wave, The stress pattern is caused by either
extensive radial plastic flow or by significant plate bending. For this
reason plates of a relatively ductile material subjected to impact by
hard conical or ogive projectiles are likely to exhibit this type of
failure. Also, thin plates which bend significantly exhibit petalling
due to the large bending stresses imposed near the free surface of
the plate. The tendency toward this type of failure is enhanced at
velocities very near the ballistic limit since at these relatively low
velocities the momentum transfer is not restricted merely to the re-
gion beneath the deforming projectile,

Cross-sectional schematic diagrams for both front and rear

petalling failure are shown in Figure 7.

3.5 Plugging

Plugging is defined as that type of failure which occurs when the
projectile pushes a plate plug, approximately equal in radius to that of
the deformed projectile, through the rear surface of the plate.

The tendency for plugging failure increases with plate hardness
as measured by the yield strength or the Brinell hardness number,
The reason for this is that the harder the plate, <he more difficult it
becomes for the plate material to be pushed radially outward. Hence
a narrow shear zone builds up ahead of the projectile in the vicinity of
its periphery and the dominant plastic flow is confined to this region.
Other parameters influencing the conditions favoring plugging type
failure are relative plate thickness and projectile nose shape. Thinner
plates have a greater tendency to plug and will even allow softer plates

to fail this way provided the velocity is not sufficiently close to the

10




(b) REAR PETALLING

Figure 7. Cross-sectional Views of Plates Showing Both Front and Rear

Petalling

ballistic limit so that radial momentum transfer causes severe plate
bending. Similarly, the blunter the projectile, the more the tendency
is toward plugging failure. This can be seen by noling that a cylindri-
cal projectile would establish a much higher shear stress gradient at
its well defined periphery than would a conical or ogive shaped projec-
tile. This is not to say that plugging would not occur under the latter
conditions because it has been observed for thin, relatively hard plates.
For thicker, more ductile plates, however, the pointed projectile nose
shape, provided it does not shatter or ueform severely, helps to pro-
vide a radial component to the material flow,

11




The process of plug formation is clearly due to a shearing failure
of the plate material. The shearing process is8 made more feasible, how-
ever, by an accompanying rise in temperature which lowers the material
resistance to shear,

The shape of the plug depends on the orientation of the maximum
shear planes. If pure shear at the projectile periphery is apparent,
then the plug will be cylindrical. Small amounts of plate bending or
the influence of supports, however, can cause tensile or compressive
stress to be superimposed in the region of maximum shear. Thus,
cases exist for which truncated cone, inverted truncated cone, barrel,
inverted barrel as well as cylindrically shaped plugs have been observed,

Figure 8 is a cross-sectional schematic diagram showing typical

plugging-type failure,

.%\\\\\\\\\\\\\\\\‘

Figure 8. Cross-sectional Schematic Diagram Indicating Plugging-type
Failure

12
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SECTION IV

REVIEW OF PENETRATION FORMULAS

Numerous studies in the ballistic range of impact velocity have
resulted in the formulation of varicus plate penetration theories,
Due to the complexity of the material behavior, these theories have
either been empirical in nature, thus lacking in physical insight as
well as predictive capabilities, or over-idealized theoretical approxi-
mations. Both types of formulations admittedly have been restricted.
to definite ranges of parameters and to the description of definite
failure modes but have served the useful purpose of defining impor-
tant parameters or groups of parameters as well as their relation-
ship to each other and their influences on material behavior. In ad-
dition, these theories provide a basis for further refinements as ad-
ditional insight into impact phenomena, provided by either numeridal
studies or through innovations in experimental techniques, is gained.
It is with this in mind that the following penetration theories are dis-
cussed in general together with the extent of their idealization., More
detail is given to those theories which are pertinent to the current
study, i.e., ballistic impact into targets of finite thickness.

Sevcral review articles concerned with the problem of impact
and penetration in the ballistic range of velocity are available. These
include the work of Goldsmith (6] and Cristescu L7]). In addition sev-

eral studies of significance appear in the literature. Bakhsiyan [8]

studied the case of a rigid cylinder of infinite mass penetrating a visco-

plas‘ic plate. He assumed that only frictional shearing stresses were
acting between the cylinder and plate material so that the displacement
field in the plate beneath the actual impact zones was not determined.

Pytel and Davids [9] studied the problem of cylindrical impact into a

13



plate by assuming a circular velocity distribution on the plate surface.
Like Bakhsiyan [ 8] they assumed only frictional shearing stress to be
acting but were able to consider plate displacements beneath the im-
pact zone., Only the case of linear viscosity was assumed. The method
of characteristics was employed by Kochetkov (10] to solve the simpli-
fied model of Bakhsiyan with the extension of the plate material model
to provide a description of perfectly-plastic and linear strain hardening
materials., Chou [11] retained the visco-plastic model but removed the
assumption of infinite projectile mass, His analysis emphasized the de-
termination of hole size after complete perforation. Both strains and
strain-rate distributions were determined for the case of aluminum
plates, Minich and Davids [12] studied velocity loading of a plate using
a viscous fluid model. A threshold strain level below which the plate
material was assumed to behave in an elastic or rigid manner was in-
troduced and the analysis was concerned mainiy with the case of trapp-
ed plugs. Kukudjanov {13] considered the added problem of projectile
rotation about its axis, the projectile being considered a rigid cylinder.
Taylor (14] and Bethe [ 15] based their theories on the assumption that
the energy necessary for plate perforation is equal to the work done in
expanding a hole in the plate from that of a very small diameter to the
final hole size. Thomson [ 16] developed an energy model for the pene-
tration of thin plates of rigid, perfectly plastic material. He considered
the energy due to plastic deformation and interface heating but attribut-~
ed most of the energy dissipation to the former. Both conical and ogival
projectiles were considered and the assumptions that neither plugging
nor spallation occurs and that projectile velocity remains constant dur-
ing impact were made.

Although most of the theoretical studies of penetration were made

feasible by assuming rigid projectiles, some studies were conducted
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specifically for determining projectile deformation. Zener and
Peterson [ 17] studied the effects of frictional, plastic, inertial and
transverse forces on the projectile during impact. Masket [ 18] and
Bluhm [19] also studied projectile deformation, the latter summari-
zing experimental studies of stress in the projectile during impact.
Finally, the theories most pertinent to the current study will
be considered in detail. These are the theory of Recht and Ipson [20],
in which a blunt cylinder pushes a plug through a thin plate, and the
theories of Thomson [16] and Zaid and Paul [21] in which conical or

ogival projectiles cause petalling failure,

4.1 The Theory of Recht and Ipson

Although Recht and Ipson [20] also consider plug formation of
thick plates as well as the case of oblique impact, only the simpler
case of normal penetration of thin plates by blunt cylinders will be
considered here. The assumption is made that a plug will be formed
in the plate and pushed out by the projectile as shown in Figure 9. Re-
duction in projectile velocity is attributed to the momentum transfer
to the plate which accelerates the plate-plug mass as well as to the
shear resistance at the plug periphery which acts to decelerate the
combined projectile-plug combination., Recht and Ipson express this
mathematically by first writing the conservation of momentum equa-

tion for a completely inelastic impact of a blunt projectile with a free

plate plug
M
Ve "M MV (1)
P sn
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Figure 9. Diagram of Plugging Failure Used in the Theory of Recht and Ipson

16



]

TP

and expressing the energy converted to internal energy for this case
as the difference between initial and final kinetic energy
2

1 mMv (2)
2 p

sn

fn |M +M
P sn

E

where the subscripts p and s refer to the projectile and plug respec-
tively, n stands for normal impact and f refers to the free-projectile-
plug impact where the retarding shearing forces are neglected. Hence

an energy balance can be written for a projectile plate impact as

1 2 1 2 1 2
— Vv = + + = A%4 + - Vv
> M Ef w 2 M 2 M (3)

where Wn is the additional kinetic energy converted to internal energy
by virtue of the presence of the peripherial shear zone and Vr is the
residual velocity of the plate-plug combination., By incorporating a
minimum perforation velocity, Vxn' for which Vr = 0, Recht and Ipson

obtain the expression

e 2

| ——e L
xn M +M 2 Mpvxn (4)
P sn
where W is the value of W_at V=V ., Next the assumption that
xn n xn
the average dynamic shear stress remains constant allows the sub-
stitution of the expression for wxn of Equation (4) in place of Wn in
Equation (3). Then by using the expression for Efn of Equation (2),

the energy balance can be written as

M 1/2
P 2 2
Vr - Mp + Msn WS Vxn (5)
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Recht and Ipaon then rewrite Equation (5) in terms of geometry as

. 5 3 1/2
vV = vV =V (6)
r 2 xn
1+0(2) I
d L

where (1 is the ratio of plate to projectile density, D/d is the ratio of
plug diameter to projectile diameter and T/L is the ratio of plate thick-
ness to projectile length.

Although much of the theory of Recht and Ipson is omitted here be-
cause of its inapplicability to this study, Equation (6) is representative
of the type of end results desired from an impact study as well as an in-
dication of the current state of the art represented by the various impact
theories previously mentioned. For example, Equation (6) is simple and
is in agreement with experimental evidence for the case of single plate
impact and plugging-type failure. In addition it relates pre-impact para-
meters with those of the post-impact state. The shortcomings, which
should not be emphasized since they represent a compromise between
the assumptions and the degree of complexity, lie in the implicit nature
of the parameters inherently involved in the minimum perforation velo-
city. It should be mentioned, however, that a partially successful analy-
tical expression for vxn has been developed (20] and forms the basis
for a possible modified version having wider ranges of application. in
addition, an assumption must be made as to the value of the plugz diameter,
D, which somewhat prejudices the calculated residual effects. With the
use of an experimentally obtained minimum perforation velocity, the
theory of Recht and Ipson [20] is extremely useful in its current state
and can be improved only by the incorporation of more explicit material

parameters, possibly through insight gained from more complete numeri-

cal studies,
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4,2 Thompson's Model

Thompson [16] calculated the work due to plastic deformation
and inertial effects in expanding a hole in a thin plate to a size neces-
sary for complete penetration by conical or ogival projectiles.

He assumed a rigid projectile and a rigid, perfectly plastic
plate. In addition he assumed that the radial and axial stresses were
insignificant compared to the circumferential stresses., Finally, it
was assumed that plastic deformation takes place without a change of
volume.

Figure 10(a) shows the deformed plate configuration used by
Thompson for the general case. The work required per unit volume

for deformation from s tob is given as

b
Y de =Y S is-=YLnE (7)
o 8 8
8 L]

so that the work done on the differential ring element is

dW = 2mh SdSLn(E) (8)
p o s

The expression for total work then becomes
b

W=2ﬂhYS sLn2
p o 8

dS=%ﬂb h Y (9)

(o]

Next the dynamical work is written as
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Figure 10, Failed Plate Configuration and Projectiles Used in I'hompson's
Model of Failure [ 16]

20



2
— db dM db
Wd = SM > db + It e db (10)
dt
where
M =17 phb
o
and
dM db
s B2 h N
dt P ob dt
Hence Equation (10) becomes
t t
o 2 o) 2
W. =nmnoph pe D e o B () @b (1)
d o d‘:2 o dt
[o o °*

For the conical head projectile of Figure 10(b)

_ RVt
3 S L
and
db _ RV
dt L

so the total work done during the penetration process by a conical head

projectile becomes

2
J 2 1 VR
W = n R h°[2Y+D(L>} (12)

F'igure 10(c) shows an ogival head projectile which can be described

by
21




db _ m RV n [Vt

a 2 (L)C“Z(L) (13)
and

—dzb = =R (ﬂ-)z sin UALAL

dtz 2L 2L

By substituting these expressions into Equation (11) and integrating
from zero to L/R and finally adding the result to the plastic work,
the expression for the total work required for penetration by an ogival

head projectile can be written as

W = nth
o

N

2
Y + 1.860p <1L11> (14)

From the expressions for total work expended the residual ve-

locities can easily be calculated as

1/2
2 2W
Ve T | Ve T M el

P

4.3 The Theory of Zaid and Paul

Zaid and Paul [21] consider the case of thin target petalling due
to impact of a rigid ogive or conical tipped projectile. Conservation of
momentum is applied to the projectile-plate zone of action as shown in
Figure 11(a). The zone of action is defined by a radius suificiently
large to include a portion of the plate that is unaffected by the perfora -

tion process., Conservation of axial momentum is written as
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(o) PETALLING FAILURE OF A THIN PLATE.
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(b) GENERAL CONFIGURATION USED IN THE THEORY OF ZAID
AND PAUL

PROJECTILE B800Y

(c) PETALLING FAILURE OF A THIN FLATE IMPACTED BY A
PROJECTILE HAVING A CONICAL NOSE.

Figure 11, Petalling Failure Diagrams, These Diagrams are due to Zaid
and Paul (21
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Mp Vo MPV Mt (y) (16)

where Mp is the projectile mass, V is the instantaneous projectile
velocity and Mt(y) is the axial component of plate momentum, The
momentum of the increment of mass dm of Figure 11(b) can be written
as

dM, = 2nph r § dr . (17
t o o

The velocity can be expressed in terms of the independent variable y

as
. _ 38 dy _ . 2%
£ = _ay qt - Vv _Y (18)

and Equation (17) when integrated gives

T lim 2 8 (ro. y)
M = 2nph S Vr ——dr (19)
t o o oy o

r d
O min

The effective target mass is then defined by Zaid and Paul as the mo-

m Mt divided by the instantaneous velocity

Mt Flim 38 (ro, y)
M(y)=7=2ﬁphos ro—rdro. (20)

r .
O min

Hence by combining Equations (16) and (19) the equation for change in
velocity is obtained:
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AV =V -V = \ (21)

o) M

Zaid and Paul [21] apply the theory to the case of the conical tipped
projectile shown in Figure 11(c). It is seen that & can be expressed

as

g = (x tana - ro) cos a (22)

so that Equation (20) becomes

y tan G
M(x) = 2nph S r dr tanQ cos G
o o o
o
or
2
M(x) = ﬂpho (ytana) sina (23)

Hence Equation (21) becomes

2
np ho (y tana) V sina

AV = v (24)
P

If it is then assumed as is done by Zaid and Paul that the total
drop in velocity is attained when the projectile body intersects the tar-

get plane, i.e. when y tan a becomes equal to rp. the projectile body

radius
wp ho rz
AVroraL © M Lk L (25)

where the instantaneous velocity is approximated by the initial impact

velocity.
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One can not extend the conical case solved by Zaid and Paul di-
rectly to the case of cylindrical impact by assuming a = 90° because
the flow is kinematically specified. However, for very large cone
angles (a0 approaching 900) the upper limit on the total velocity drop

is

— o P
(®*VroraL)v.L. = M Vo (26)

and the actual value is probably quite close to that value since sin a = 1,

Equation (26) could then be expressed as

pT hn
(*VroraLju.L. * w)\T) Yo (27)

It should be noted, however, that strength effects do not appear
in this formulation and for a given velocity this omission would cause
a greater error for large values of @, For the case of a cylinder im-
pocting a plate which fails by petalling, it might be possible to incor-
porate strength effects implicitly through use of a reduced velocity in
Equation (27). The value to be used would be the velocity at which petal-
ling failure begins assuming a reduction in velocity caused by kinetic
energy lost in initial bending of the plate. Another possibility, how-
ever, is to develop the theory for cylindrical impacts along lines paral-
lel to the theory of Zaid and Paul assuming a different form for the

kinematic flow constraints. This is done in the following Section,
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4.4 Petalling Failure Caused by Cylindrical Impact

Petalling type failure usually occurs when the plate material is

pushed axially and radially outward as in the case o thick plates or
impact by conical or ogive projectiles. For thin plates subjected to
impact by a blunt cylinder, petalling failure can occur provided the
material does not behave in a brittle manner and significant plate bend-
ing occurs to provide the necessary stress pattern, These conditions
are met in thin ductile plates when the impact velocity is very near the
ballistic limit, The model used in this section assumes that a rigid
projectile impacting into a thin aluminum plate causes the necessary

amount of bending to initiate petalling failure, Figure 12 indicates the

stages of this type of penetration, The projectile velocity is decreased

from its initial impact velocity Vo. to the value V  shown in Figure 12(b)

at which time the plate has bent sufficiently for raldial fracture to occur,
This velocity will be used as the initial velocity in a modified Zaid and
Paul theory.

In order to apply the theory a feasible kinematic flow pattern for
petalling must be assumed. One such possibility is shown in Figure 13,

It is assumed that

: - L
sin 6 = = y (28) |
P
so that
|
Q 1
6cose=;— V. (29)
P

Hence the expression for § is
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(c) PETALS BEND DOWN AND RADIALLY
l OUTWARD.

(b) PLATE BENDING HAS REDUCED VELOCITY

TO V; AND FRACTURE OCCURS, FORMING
PETALS.

(d) PROJECTILE ATTAINS

VELOCITY
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Figure 12, Stages of Petalling Failure due to Cylindrical Impact, Velocity
Must be Near the Ballistic Limit Velocity for this Type of Failure

<

Figure 13, Diagram Indicating an Assumed Kinematic Flow Pattern for
Petalling Failure due to Cylindrical Impact at Velocities near the Ballistic
Limit
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Substituting this expression into Equation (20) and integrating over the

interval r, < 0 to ool x-p - y gives
2 3
= - X - g TE -
M(y) 21 op ho (l rp) (rp y) 3rp (rp y) (32)

and from Equation (21)
2 n
p ho \'4

2 3
AV = -—T— (l - -I'L> (rp - ) - 3T' (rp O Y) (33)
P P P

To get the total velocity change the value of y = 0 is used in the above
expressions which amounts to calculating the equivalent momentum

change for the reverse process, The value obtained is
P h
4 T o
A =, = .
Vi <3> (pp) (L ) Vi (34)

29




This velocity change is of the same order of magnitude as that obtain-
ed by taking the limit of the cone as its half angle approaches m/2,
This however, is not the total velocity change since it was assumed
that plate bending sufficient for petalling has occurred previous to

the applications of the modified Zaid and Paul theory., Hence the total

velocity change is given as

AV = AV + AV
o

TOTAL (35)

1
where AVo = Vo - Vl. and is the initial loss in projectile velocity
up to the point of fracture, The value to be used for Vl must be ob-
tained from either an approximate solution of a plate impulse loading
problem or from the interface velocity calculated numerically as in
CRAM at the time of predicted fracture. It should be noted that this
theory applies only for thin ductile plates at velocities near the ballis-

tic limit,
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SECTION V

NUMERICAL SOLUTION OF IMPACT PROBLEMS

As was mentioned earlier, numerical studies of the impact pro-
cess form an important and necessary link in the development of sim-
ple, meaningful penetration formulas which relate pre- and post-im-
pact parameters. In addition numerical solutions provide detailed
answers to questions relating either to parameters which are impli-
citly handled by the penetration formulas or to specific impact cases
for which satisfactory penetration formulas are non-existent,

It is important then to understand the numerical model complete -
ly, including the constitutive relations used as well as the numerical

techniques employed.

5.1 Mathematical Models

The mathematical model used in the numerical solution of the
ballistic impact problem involves the necessary equations for express-
ing the dynamic material behavior. Of these equations, the equation
of state, which, in general, relates pressure to internal energy and
volume change and the constitutive relation involving the deviatoric
stresses and strains are of utmost importance,

The equations governing the ballistic impact process are given
in Appendix I. These include the equations of motion, continuity and
energy conservation together with expressions for the strain rates and
artificial viscosity, To complete the mathematical model, a constitu-
tive relation including an equation of state must be chosen., The equa-

tion of state to be used here is of the form
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P = (ag*tamt az“Z E a3“‘3) (r-ag)

+ (bo +bt bzuz + b3u3) E (36)
where p is pressure, u is the reciprical of relative volume minus one

or current density divided by initial density minus one, the a, and bi'
i=0,1,2,3 are constants for a given material, and E is total internal ¢nergy
per unit volume, Figure 14 is a one-dimensional schematic showing the
typical behavior of one form of Equation (36). It is assumed that the material
is able to withstand very high hydrostatic compressive stresses but that it
will fail in hydrostatic tension at a value of stress equal to 1/3 of the dynamic
yield stress unless values for minimum allowable pressure are known for

specific materials,

P

P=P (p)

SLOPE =K =(A+2/3pu)

p =

Figurce 14, Schematic Representation of Hugoniot Equation of State
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The strength dependent portion of the constitutive relation is

given in terms of the deviatoric stresses and strains, The equations

for this description are:

8 . = (éxx -%— \'//v‘)

s = 2u (é s \'//v)

Yy yy 3

, . y (37)
g = M (%0 "3 v/IV)

T

xy ~ " ()

where the terms on the left of the equations represent time rates of
change of the deviatoric stress tensor, U is the shear modulus and
the terms in parentheses represent the time rates of change of devia-
toric strain, i.e. total components minus the symmetric terms.
Equations (37) represent elastic behavior, To complete the model,

a yield criterion must be chosen. It will be assumed that the ma-
terial is elastic-perfectly plastic and that the Von Mises yield cri-

terion is applicable. This can be expressed as

2 2 2 2 2
+ - = <
<sl + 5, 53\) 3 Yo 0 (38)
where Yo is the yield strength of the material and the 8. i=1, 2, 3,

are the principal stress deviators. To handle the problem of the non-
uniqueness of stress which arises in plasticity due to the fact that ma-
terial unloads elastically, the stresses are first calculated using the

elasticity equations, tested against the yield condition and finally the

components are adjusted normally to the yield surface, if necessary.
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Figure 15, Projection of Von Mises Yield Surface on the v -Plane

This procedure is demonstrated in Figure 15. The orthogona) prin-
cipal stress axes are shown. The T -Plane is situated perpendicular to
a line which makes equal angles with the axes. This line is also the
axis of a right circular cylinder in stress space, i.e. the yield sur-
face, and its projection on the ™ -Plane is shown in Figure 15, When
the material is loaded elasticly the loading path lies within the circle.
If, however, the stress components calculated from Equations (37)
violate the yield condition, they must be adjusted normally to the yield
surface. This is shown in Figure 15 where the material was loaded
from nton + 1. Since the stress state at n + 1 is not possible for this
model, each component must be adjusted so that the state of stress is
at point P on the yield surface. This is accomplished by multiplying

each stress component by the fraction
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=" (39)

[ 2 2 21 2 2 2 2
ZJ-[al+sz+s3J = 8 +,yy+,ee+2'rxy (40)

and J is the second invariant of the stress deviators.

The total stresses, which are used in the equation of motion

are given by the equations

T = -
x s . (p+ql

EYY = S (p+q) (41)

269 Sgg - [p+q]

T = T
xy Xy

where p is the pressure given by the equation of state and q is the
artificial viscosity term (see Appendix I). The artificial viscosity
is necessary only for stabilization of the numerical techniques em-
ployed in the solution of these equations. It has the effect of spread-
ing out the shock front to avoid discontinuities in the stresses.

Figure 16 is a one-dimensional schematic which indicates the
material behavior when the total stresses are considered. When the
material is loaded, path O A B C of Figure 16 is followed. Line A BC

is parallel to the hydrostatic curve and is separated from it by a value
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of 2/3 Yo. When the stresses are released, the path C D E is followed.
It can be seen from Figure 16 that the amplitude of an elastic release
wave can be much greater than the yield strength of the material. This
is because its amplitude depends on the relative slopes of line C D and
the hydrostat., Since the slope of C D is K + % M and the slope of the hy-
drostat is K, the relative slope, and hence the elastic release amplitude,

depends on the shear modulus of the material. The velocity of the elas-

tic release wave is given by

> .
Cp =J@ +-3-u>/p (42)

S0 it is seen that an increase in the shear modulus has the effect of re-

ducing the amplitude of the release wave while increasing its velocity.
Since wave velocities are dependent upon the slopes of the stress-strain
paths, it can be seen from Figure 16 that an elastic release wave will
overtake the loading wave as long as the slope of the hydrostat at the
stress level to which the material was loaded is less than the slope of
the elastic unloading path. This process attenuates the shock amplitude.
la order to effectively apply the mathematical model described above
to the solution of impact problems, it must be incorporated into the nu-
merical framework of a computer program. The numerical techniques

and procedures used here are discussed in the following section,

5.2 Numerical Techniques

A wide variety of numerical codes which can be applied to the solu-
tion of impact problems have been developed at the General Electric
Space Sciences Laboratory. These include PICWICK III (Eulerian fZZ]).
VISTA (Particle-in-cell (23]) and CRAM (Lagrangian). In addition, a
structure code, DEPROSS [24, 25] is available. The choice of numerical
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code to be used in any particular solution of a problem depends on the
range of values of the parameters of interest as well as restrictions
imposed by the desired results. In the present ballistic velocity im-
pact study the Lagrangian code, CRAM, will be employed, since it is
best suited for including realistic strength effects, defining boundaries

and handling more than one material.

5.3. CRAM Description

CRAM, an acronym for Continuous Response of Anelastic Materials,
is a two-dimensional Lagrangian code which was developed at the Gen-
eral Electric Space Sciences Laboratory for studying the responsc of ma-
terials to dynamic loading in both the hydrodynamic and elastic-plastic
regimes. The code is similar to HEMP developed by M. Wilkins [ 26]
at Lawrence Radiation Laboratory and is designed to be run on the IBM
7094 computer. The basic equations for the Lagrangian description are
given in Appendix I, The finite difference equations employed in CRAM
are in Appendix II,

In the application of CRAM to any specific problem, several factors
must be considered. These include the generation of the Lagrangian mesh,
the proper choice of constitutive relations and material constants, and
loading conditions, For the case of axisymmetric impact the Lagrangian
grid can be generated using radial (x) and axial (y) lines as indicated in
Figure 17, Here a generic mesh point (j, k) is shown. The mass as-
sociated with point (j, k) is contained within the dashed lines. The inte-
gral definitions of partial derivatives (see Appendix I) are employed in
the equations of motion, the path of integration being the closed curve,

I, II, III, IV, This allows mesh distortion without invalidation of the nu-
merical scheme., The necessary loading conditions are applied at the
mesh periphery and loading is accompl.st.ed by giving a velocity to all

projectile mesh points,
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Figure 17, Lagrangian Grid at Time Zero for the Case of

Axisymmetrix Impact

The first computation in the CRAM code is that of velocity, using

the equations of motion, From these and the time step, new positions
are determined. The velocities and positions calculated are associat-

ed with the actual mesh points. All other calculated quantities are cell-
centered. After velocities and positions, the relative volume of each
cell and its artificial viscosity are calculated. The strain increments
are computed next and from these, in conjunction with the constitutive
relation, the deviatoric stress components are determined. After the

pressure is found for each cell from the equation of state, the total
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stresses can be formed. From these components the principal stress-
es and directions are determined and finally total internal energy is com-
puted. When these calculations are completed for each mesh point or
cell, a new time step is computed and the cycle repeated.

For impact studies a special subroutine, called Slide, is necessary
to allow a decoupling of the grid points at the projectile-target interface
(A B in Figure 17). This routine is carried out in three basic steps:

1. The slave points (projectile mesh points on line A B, Figure 17)
are allowed to move along the slide line (A B) as though it were a rigid
boundary.

2. The grid points in the master side (target points along A B,
Figurel7)are then allowed to move., Only mass on the target side is
associated with this movement, but forces are allowed to act across
the slide line.

3. The slave points are now forced to lie on the new position of
the slide line so that voids will not be created. A correction term is
applied to compensate for the motion perpendicular to the slide line,

Since the numerical scheme is based on continuum mechanics,
special consideration must be given to post fracture phenomena. That
is, the incorporation of failure criteria into the numerical scheme is
insufficient for a complete solution of the impact problem since the
governing equations used before failure no longer apply, at least in the
affected vicinity of the failed portion of the material. Since this prob-
lem presents a major obstacle to the total solution of the impact prob-
lem, and since there are several methods of handling it, material fail-
ure criteria and their application in conjunction with special types of
observed failure phenomena as well as possible methods of post-failure

treatment are discussed in the following section.
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SECTION VI

FAILURE PHENOMENA

The study of failure phenomena includes the formulation and ap-
plication of failure criteria, a description of the failure process, and
the development of methods for predicting and describing post-failure
effects, Difficulties arise because of the complexity of material be-
havior when subjected to impact loading which manifests itself in the
numerous material and configurational parameters associated with a
specific failure mode. In addition, the use of a continuous numerical
mesh for describing the discontinuous phenomena of failure requires
that special consideration be given to the failed regions or an alteration
of the numerical scheme be developed to allow the opening of voids in
the computational mesh., Finally, relatively little is known about the
physical nature of material failure; hence, the incorporation of a miicro-
scopic theory of failure into the numerical scheme would require further
study, both theoretical and experimental, Following is a discussion of

the various aspects of the mathematical treatment of failure phenomena.

6.1 Generalized Material Failure Criteria

From the standpoint of a continuum approach to material failure,
the ideal generalized failure criteria would »e in the form of a surface
in stress space which, when intersected by the loading curve, would pre-
dict failure. Such a failure surface would not be rigid but would vary as
a function of the material stress-strain history, Two observations can
be made concerning a generalized failure surface for homogeneous, iso-
tropic material. First, the surface must be axially symmetric with re-
spect to the line in stress space having equal direction cosines with the
principal stress axes, Furthermore, since the surface should be inde-

pendent of the spatial axes, it can be written as a function of the stress
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invariants, At present there is no suitable relationship for such a gene-
ralized theory to be incorporated into the material model for the case of
impact. Until such relationships are developed, a more specific approach

to material failure must be taken,

6.2 Specific Failure Criteria

The failure modes associated with projectile-plate impact were
previously listed as fracture due to the initial stress wave, radial frac-
ture behind the initial wave front, spallation, petalling and plugging. In
addition to these, projectile shattering could occur for certain projectile
materials impacting at higher velocities. These failure modes are well
defined and their failure mechanisms are well enough understood so that
failure criteria based on the current state of stress can be employed.
For example, a maximum shear theory can be used for ithe case of plug-
ging and maximum tensile stress for the case of spallation, The more
difficult task which requires further study is to determine the exact value
of fracture stress to be used since it is a function of the material loading
history.

The criterion for fracture due to the initial stress wave is one
of maximum compressive stress., The value of the stress to be used in
th.s case does not depend on the loading history during the impact pro-
cess since the plate fails when the initial stress wave passes through,

The criterion for radial fracture behind the initial wave front is
one of maximum tensile stress, When the circumferential stress attains
a critical value, radial fracture will occur, The value of the tensile
stress to be used for this case is a function of the loading history since
the initial stress wave has passed through the fracture region.

The criterion for spallation failure is also a maximum value of

tensile stress, Fracture occurs when the axial normal stress in tension

42



o

is greater than a maximum value. In impact this situation may occur
when a compression wave is reflected at a free surface., Again the
value of maximum stress to be used depends on the loading history.

A maximum tensile stress failure criterion also seems best
suited for predicting petalling type failure. Material that is pushed
radially outward develops large circumferential tensile stresses which
can cause either front or back petalling. In addition bending stresses
can add significantly to the tensile stress at the back surface of a thin
plate such that the tendency toward petalling failure is enhanced. Again
the criterion is one of maximum tensile stress, the value of which is
history dependent,

The criterion for plugging failure is one of maximum shear stress
and the exact value to use is again a function of previous loading.

Finally, the criterion for the shattering of hard projectiles would
be one of maximum absolute value of pressure,

The failure criteria are given here without the exact critical
stress value since this varies not only for different materials but also
according to the loading history. For this reason, some measure of
loading history, such a; plastic work, should be monitored. By study-
ing both the stress patterns and material loading history throughout the
impact process, definite fracture stress values should be obtainable for
the specific failure modes and eventually combined to form a general

failure criterion.,

6.3 Numerical Applications of Failure Criteria

The development cof failure criteria and their incorporation into
the numerical scheme is but a first step in the study of fracture pheno-

mena., The important and more difficult task is that of describing the
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material behavior numerically after fracture has been predicted. There
are at least three feasible ways to do this and the methods vary in de-
grees of difficulty,

In the simplest method, which is used here, the special failure
criteria are chosen and the numerical solution is carried out in time to
a point where gross failure is predicted. This ends the numerical por-
tion of the problem and the residual effects are deduced from the dyna-
mic state at the time of fracture. This method has the advantage that no
special considerations for handling the fractured material need be incor-
porated into the numerical scheme., The only disadvantage is that further
analysis is necessary after the completion of the numerical portion of the
problem in order to predict residual effects,

An alternate method is to continue the numerical solution after
failure is predicted but make the necessary adjustments to the stress
and strain field in the vicinity of the fracture, For example, in the case
of spallation, the normal stress perpendicular to the plane of failure can
be zeroed out and an increment of strain applied to account for the initial
separation. In the case of plugging, the shear stress can be zeroed out
on the failure surface. This method of handling fracture is relatively
simple but requires alteration of the numerical scheme for times after
predicted failure,

Probably the most difficult method of handling fracture is to make
numerical provisions for actual opening of the computational mesh along
the fracture surface. For certain cases, as in plugging, the operation
can be simplified by assuming fracture to occur instantaneously across
the plate thickness and subsequently treat the plug as having a free sur-
face. It is the general opening of voids, such as in the case of spalla-
tion where only an interior free surface is created, that requires signi-

ficant alteration of the present numerical scheme,
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Finally, it is possible to treat a region of severe fracture, such
as a hard projectile subjected to impact at high velocities and which
shatters by altering the equation of state in that region, to a form more

descriptive of a particulate form of matter,

6. 4. The Residual State

The residual state is defined as the dynamic state of the material
and its configuration resulting from the impact and penetration process,
In addition to the usual mass and velocity distribution of residual parti-
cles, it is important to know their shape as well as the internal state of
the material. The observed effects of plate spacing uon secondary pene-
tration capabilities indicate that residual kinetic energy alone is insuffi-
cient for predicting the damage of subsequent plates in spaced armor
configurations, Whether or not the residual fragments will break up
further after impact is an important question,

Hence the development of any predictive penetration formula

should include some realistic measure of the residual state.
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SECTION VII

CRAM APPLICATIONS AND RESULTS

Two axisymmetric impact problems were solved using the CRAM
computer code. These consisted of a steel cylinder with length to dia-
meter ratio of one impacting a thin steel plate (problem III) and a thin
aluminum plate (Problem III-A) respectively. The impact velocity was
0. 61 km/sec for both cases as was the geometrical configuration shown
in Figure 18, The material constants used are listed in Table I. The

numerical results for the two problems will be discussed separately.

7.1 Problem III (Steel into Steel)

A Lagrangian grid similar to that of Figure 17 was generated
using the exterior dimensions given in Figure 18. The impact velocity
was 0, 61 km/sec and the material parameters used in Equations (36),
(37) and (38) are shown in Table I. The grid points were moved accord-
ing to the equations of motion of Appendices I and II,

The actual computational grid used in the solution as plotted by
the SC 4020 plotter is shown for various times throughout the solution
in Appendix III, The letters superimposed on the grid cells in Figures
III-1 through III-14 indicate compressive stress waves traveling thrcugh
the material, The steeper gradients are indicated by letters nearer
the end of the alphabet., The lettering allows the initial stress waves to
be traced through both the projectile and target. After several reflec-
tions and wave interactions, however, stress-plots taken from the com-
puter output are more informative,

Figures 19 through 22 are plots of the computed axial normal
stress, Eyy' versus axial distance, y, along the axis of symmetry for
problem III. The dashed verticalline is the initial projectile-target

interface and y = 0 is the initial poeition of the free surface of the plate,
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R=0.4155 CM

L=0.831 CM

T=0.16 CM

IMPACT VELOCITY = V= 0.61 KM/SEC

Figure 18, Geometrical Configuration for Problems III and III-A
TABLE I, MATERIAL CONSTANTS USED IN PROBLEMS III AND JII-A
Material Projectile Target Target
Constants (10 and III-A) (1I1I) (II1-A —-—L
— P&n
a 0 0 0
o

al 1236 kbars 1236 kbars 765 kbars

a, 2452 kbars 2452 kbars 1659 kbars

a, 5138 kbars 5138 kbars 428 kbars

a, 0 0 0

bo 2.2 2,2 2.13

bl 2.2 2.2 2.13

b2 0 0 0

b3 0 G 0

" 1930 kbars 193C kbars 274 kbars

Yo 5.44 kbars 5.44 kbars 2.80 kbars

P . -60 kbars -60 kbars «30 kbars

min 3 .
P, 7.8 gm/cm 7.8 gm/cm 2.79 gm/cm3
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The various curves in each figure are for various times and are labeled
cyclewise for convenience. The corresponding real times are given in
M-sec on each graph,

Several qualitative aspects of the impact pro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>